Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529901

RESUMO

Genome assembly and annotation using short-paired reads is challenging for eukaryotic organisms due to their large size, variable ploidy and large number of repetitive elements. However, the use of single-molecule long reads improves assembly quality (completeness and contiguity), but haplotype duplications still pose assembly challenges. To address the effect of read length on genome assembly quality, gene prediction and annotation, we compared genome assemblers and sequencing technologies with four strains of the ectomycorrhizal fungus Laccaria trichodermophora. By analysing the predicted repertoire of carbohydrate enzymes, we investigated the effects of assembly quality on functional inferences. Libraries were generated using three different sequencing platforms (Illumina Next-Seq, Mi-Seq and PacBio Sequel), and genomes were assembled using single and hybrid assemblies/libraries. Long reads or hybrid assemby resolved the collapsing of repeated regions, but the nuclear heterozygous versions remained unresolved. In dikaryotic fungi, each cell includes two nuclei and each nucleus has differences not only in allelic gene version but also in gene composition and synteny. These heterokaryotic cells produce fragmentation and size overestimation of the genome assembly of each nucleus. Hybrid assembly revealed a wider functional diversity of genomes. Here, several predicted oxidizing activities on glycosyl residues of oligosaccharides and several chitooligosaccharide acetylase activities would have passed unnoticed in short-read assemblies. Also, the size and fragmentation of the genome assembly, in combination with heterozygosity analysis, allowed us to distinguish homokaryotic and heterokaryotic strains isolated from L. trichodermophora fruit bodies.


Assuntos
Genoma , Laccaria , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Haplótipos
2.
Ecol Evol ; 13(3): e9838, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911302

RESUMO

Several Mesoamerican crops constitute wild-to-domesticated complexes generated by multiple initial domestication events, and continuous gene flow among crop populations and between these populations and their wild relatives. It has been suggested that the domestication of cotton (Gossypium hirsutum) started in the northwest of the Yucatán Peninsula, from where it spread to other regions inside and outside of Mexico. We tested this hypothesis by assembling chloroplast genomes of 23 wild, landraces, and breeding lines (transgene-introgressed and conventional). The phylogenetic analysis showed that the evolutionary history of cotton in Mexico involves multiple events of introgression and genetic divergence. From this, we conclude that Mexican landraces arose from multiple wild populations. Our results also revealed that their structural and functional chloroplast organizations had been preserved. However, genetic diversity decreases as a consequence of domestication, mainly in transgene-introgressed (TI) individuals (π = 0.00020, 0.00001, 0.00016, 0, and 0, of wild, TI-wild, landraces, TI-landraces, and breeding lines, respectively). We identified homologous regions that differentiate wild from domesticated plants and indicate a relationship among the samples. A decrease in genetic diversity associated with transgene introgression in cotton was identified for the first time, and our outcomes are therefore relevant to both biosecurity and agrobiodiversity conservation.

3.
Stem Cell Rev Rep ; 18(8): 3050-3065, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35809166

RESUMO

Patient-derived cells hold great promise for precision medicine approaches in human health. Human dermal fibroblasts have been a major source of cells for reprogramming and differentiating into specific cell types for disease modeling. Postmortem human dura mater has been suggested as a primary source of fibroblasts for in vitro modeling of neurodegenerative diseases. Although fibroblast-like cells from human and mouse dura mater have been previously described, their utility for reprogramming and direct differentiation protocols has not been fully established. In this study, cells derived from postmortem dura mater are directly compared to those from dermal biopsies of living subjects. In two instances, we have isolated and compared dermal and dural cell lines from the same subject. Notably, striking differences were observed between cells of dermal and dural origin. Compared to dermal fibroblasts, postmortem dura mater-derived cells demonstrated different morphology, slower growth rates, and a higher rate of karyotype abnormality. Dura mater-derived cells also failed to express fibroblast protein markers. When dermal fibroblasts and dura mater-derived cells from the same subject were compared, they exhibited highly divergent gene expression profiles that suggest dura mater cells originated from a mixed mural lineage. Given their postmortem origin, somatic mutation signatures of dura mater-derived cells were assessed and suggest defective DNA damage repair. This study argues for rigorous karyotyping of postmortem derived cell lines and highlights limitations of postmortem human dura mater-derived cells for modeling normal biology or disease-associated pathobiology.


Assuntos
Dura-Máter , Transcriptoma , Humanos , Animais , Camundongos , Dura-Máter/metabolismo , Dura-Máter/patologia , Diferenciação Celular/genética , Fibroblastos , Células Cultivadas
4.
FASEB J ; 34(9): 11957-11969, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32701214

RESUMO

Small-molecule inhibitors of abnormal protein self-assembly are promising candidates for developing therapy against proteinopathies. Such compounds have been examined primarily as inhibitors of amyloid ß-protein (Aß), whereas testing of inhibitors of other amyloidogenic proteins has lagged behind. An important issue with screening compound libraries is that although an inhibitor suitable for therapy must be both effective and nontoxic, typical screening focuses on efficacy, whereas safety typically is tested at a later stage using cells and/or animals. In addition, typical thioflavin T (ThT)-fluorescence-based screens use the final fluorescence value as a readout, potentially missing important kinetic information. Here, we examined potential inhibitors of superoxide dismutase 1 (SOD1) using ThT-fluorescence including the different phases of fluorescence change and added a parallel screen of SOD1 activity as a potential proxy for compound toxicity. Some compounds previously reported to inhibit other amyloidogenic proteins also inhibited SOD1 aggregation at low micromolar concentrations, whereas others were ineffective. Analysis of the lag phase and exponential slope added important information that could help exclude false-positive or false-negative results. SOD1 was highly resistant to inhibition of its activity, and therefore, did not have the necessary sensitivity to serve as a proxy for examining potential toxicity.


Assuntos
Benzotiazóis/farmacologia , Agregados Proteicos/efeitos dos fármacos , Superóxido Dismutase-1/química , Benzotiazóis/química , Humanos
5.
Fungal Biol ; 124(3-4): 205-218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32220381

RESUMO

In order to increase survival rates of greenhouse seedlings destined for restoration and conservation programs, successful mycorrhization of the seedlings is necessary. To reforest forest ecosystems, host trees must be inoculated with ectomycorrhizal fungi and, in order to guarantee a sufficient supply of ectomycorrhizal inoculum, it is necessary to develop technologies for the mass production of ectomycorrhizal fungi mycelia. We selected the ectomycorrhizal fungus Laccaria trichodermophora, due to its ecological traits and feasible mycelia production in asymbiotic conditions. Here, we report the field sampling of genetic resources, as well as the highly productive nutritional media and cultivation parameters in solid cultures. Furthermore, in order to achieve high mycelial production, we used strain screening and evaluated pH, carbon source concentration, and culture conditions of submerged cultures in normal and baffled shake flasks. The higher productivity culture conditions in shake flasks were selected for evaluation in a pneumatic bioreactor, using modified BAF media with a 10 g/L glucose, pH 5.5, 25 °C, and a volumetric oxygen transfer coefficient (KLa) of 36 h-1. Under those conditions less biomass (12-37 %) was produced in the pneumatic bioreactor compared with the baffled shake flasks. This approach shows that L. trichodermophora can generate a large biomass concentration and constitute the biotechnological foundation of its mycelia mass production.


Assuntos
Reatores Biológicos/microbiologia , Laccaria , Micélio/crescimento & desenvolvimento , Micorrizas , Agaricales , Biomassa , Conservação dos Recursos Naturais , Meios de Cultura/química , Florestas , Laccaria/crescimento & desenvolvimento , Laccaria/isolamento & purificação , Micorrizas/crescimento & desenvolvimento , Micorrizas/isolamento & purificação , Oxigênio/provisão & distribuição , Plântula/microbiologia , Árvores/microbiologia
6.
PLoS Genet ; 15(8): e1008295, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398187

RESUMO

The progressive failure of protein homeostasis is a hallmark of aging and a common feature in neurodegenerative disease. As the enzymes executing the final stages of autophagy, lysosomal proteases are key contributors to the maintenance of protein homeostasis with age. We previously reported that expression of granulin peptides, the cleavage products of the neurodegenerative disease protein progranulin, enhance the accumulation and toxicity of TAR DNA binding protein 43 (TDP-43) in Caenorhabditis elegans (C. elegans). In this study we show that C. elegans granulins are produced in an age- and stress-dependent manner. Granulins localize to the endolysosomal compartment where they impair lysosomal protease expression and activity. Consequently, protein homeostasis is disrupted, promoting the nuclear translocation of the lysosomal transcription factor HLH-30/TFEB, and prompting cells to activate a compensatory transcriptional program. The three C. elegans granulin peptides exhibited distinct but overlapping functional effects in our assays, which may be due to amino acid composition that results in distinct electrostatic and hydrophobicity profiles. Our results support a model in which granulin production modulates a critical transition between the normal, physiological regulation of protease activity and the impairment of lysosomal function that can occur with age and disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Granulinas/metabolismo , Lisossomos/metabolismo , Doenças Neurodegenerativas/genética , Envelhecimento/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Endopeptidases/metabolismo , Regulação da Expressão Gênica , Granulinas/genética , Humanos , Doenças Neurodegenerativas/patologia , Estresse Fisiológico/genética
7.
J Biol Chem ; 294(10): 3501-3513, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30602569

RESUMO

Mutations in superoxide dismutase 1 (SOD1) cause 15-20% of familial amyotrophic lateral sclerosis (fALS) cases. The resulting amino acid substitutions destabilize SOD1's protein structure, leading to its self-assembly into neurotoxic oligomers and aggregates, a process hypothesized to cause the characteristic motor-neuron degeneration in affected individuals. Currently, effective disease-modifying therapy is not available for ALS. Molecular tweezers prevent formation of toxic protein assemblies, yet their protective action has not been tested previously on SOD1 or in the context of ALS. Here, we tested the molecular tweezer CLR01-a broad-spectrum inhibitor of the self-assembly and toxicity of amyloid proteins-as a potential therapeutic agent for ALS. Using recombinant WT and mutant SOD1, we found that CLR01 inhibited the aggregation of all tested SOD1 forms in vitro Next, we examined whether CLR01 could prevent the formation of misfolded SOD1 in the G93A-SOD1 mouse model of ALS and whether such inhibition would have a beneficial therapeutic effect. CLR01 treatment decreased misfolded SOD1 in the spinal cord significantly. However, these histological findings did not correlate with improvement of the disease phenotype. A small, dose-dependent decrease in disease duration was found in CLR01-treated mice, relative to vehicle-treated animals, yet motor function did not improve in any of the treatment groups. These results demonstrate that CLR01 can inhibit SOD1 misfolding and aggregation both in vitro and in vivo, but raise the question whether such inhibition is sufficient for achieving a therapeutic effect. Additional studies in other less aggressive ALS models may be needed to determine the therapeutic potential of this approach.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Mutação , Organofosfatos/farmacologia , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Sítios de Ligação , Peso Corporal/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Modelos Animais de Doenças , Camundongos , Força Muscular/efeitos dos fármacos , Organofosfatos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase-1/metabolismo , Análise de Sobrevida
8.
ACS Chem Biol ; 13(9): 2794-2807, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30110532

RESUMO

Mutations in Cu/Zn-superoxide dismutase (SOD1) gene are linked to 10-20% of familial amyotrophic lateral sclerosis (fALS) cases. The mutations cause misfolding and self-assembly of SOD1 into toxic oligomers and aggregates, resulting in motor neuron degeneration. The molecular mechanisms underlying SOD1 aggregation and toxicity are unclear. Characterization of misfolded SOD1 is particularly challenging because of its metastable nature. Antibodies against misfolded SOD1 are useful tools for this purpose, provided their specificity and selectivity are well-characterized. Here, we characterized three recently introduced antimisfolded SOD1 antibodies and compared them with two commercial, antimisfolded SOD1 antibodies raised against the fALS-linked variant G93A-SOD1. As controls, we compared the reactivity of these antibodies to two polyclonal anti-SOD1 antibodies expected to be insensitive to misfolding. We asked to what extent the antibodies could distinguish between WT and variant SOD1 and between native and misfolded conformations. WT, G93A-SOD1, or E100K-SOD1 were incubated under aggregation-promoting conditions and monitored using thioflavin-T fluorescence, electron microscopy, and dot blots. WT and G93A-SOD1 also were analyzed using native-PAGE/Western blot. The new antimisfolded SOD1 and the commercial antibody B8H10 showed variable reactivity using dot blots but generally showed maximum reactivity at the time misfolded SOD1 oligomers were expected to be most abundant. In contrast, only B8H10 and the control antibodies were reactive in Western blots. Unexpectedly, the polyclonal antibodies showed strong preference for the misfolded form of G93A-SOD1 in dot blots. Surprisingly, antimisfolded SOD1 antibody C4F6 was specific for the apo form of G93A-SOD1 but insensitive to misfolding. Antibody 10C12 showed preference for early misfolded structures, whereas 3H1 bound preferentially to late structures. These new antibodies allow distinction between putative early- and late-forming prefibrillar SOD1 oligomers.


Assuntos
Anticorpos/imunologia , Agregados Proteicos , Dobramento de Proteína , Superóxido Dismutase-1/química , Superóxido Dismutase-1/imunologia , Animais , Afinidade de Anticorpos , Humanos , Mutação Puntual , Conformação Proteica , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...